Global Map Of Ammonia Emissions Measured From Space Reveals New Hotspots

Distribution of ammonia in 2008, measured using the IASI instrument on board the /MetOp satellite, superimposed on an image of Europe obtained on August 30, 2008 by MODIS. Yellow to red colors indicate regions with high ammonia concentrations. The white structures are clouds. (Credit: Copyright Image MODIS Copyright L. Gonzalez/C. Deroo LOA; Image IASI Copyright ULB & INSU-CNRS)

The first complete map of global ammonia emissions has recently been achieved using to satellite data. It reveals an underestimation of some of the ammonia concentrations detected by current inventories, and identifies new hotspots.This work, carried out by a team from LATMOS-IPSL (CNRS/UPMC/UVSQ) in collaboration with Belgian researchers from the Université Libre de Bruxelles, was facilitated by the infrared measurements of the French IASI instrument, part of the MetOp meteorological satellite developed by CNES.

Ammonia (NH3) contributes significantly to the formation of the particles that give rise to pollution episodes. It mainly emanates from the use of agricultural fertilizers and increasingly intensified livestock breeding practices. Ammonia is the least well-understood pollutant regulated by European Directives on air quality. Mapping of its emissions are imprecise and systematic global monitoring of this compound is difficult. Once emitted, ammonia only remains in the atmosphere for a short period but triggers a cascade of environmental effects. At a local level, high ammonia concentrations affect fauna, flora and air quality.

read on…

About Rashid Faridi

I am Rashid Aziz Faridi ,Writer, Teacher and a Voracious Reader.
This entry was posted in pollution. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.